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Robust Capture and Transfer Trajectories
for Planetary Satellite Orbiters
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The dynamics of temporarily captured trajectories in the Hill three-body problem is studied, with application
to orbits about Jupiter’s satellite Europa. By the use of a model that includes the tidal force of Jupiter, the phase
space of capture trajectories is numerically determined and trajectories are identified that do not impact with
the planetary satellite or escape over long periods of time. These safe zones in phase space are mapped out over
different energy levels, identifying regions in phase space where an uncontrolled spacecraft would remain in orbit
without impact or escape. Finally, transfers from these safe trajectories into long-term stable frozen orbits are
identified, and the cost to transfer into these orbits is evaluated. Resulting from this analysis is the identification
of robust capture trajectories and criteria on placing them into long-term stable orbits.

Introduction

I N this paper, we study capture trajectories in the Hill three-body
problem. Capture trajectories are trajectories that begin in the

exterior region of Hill’s problem and enter the region to orbit the
planetary satellite at least one time. Previous work has been done
on these types of orbits. In particular, Villac and Scheeres1 exam-
ined escaping trajectories in the Hill three-body problem, which are
analogous to capture trajectories with time reversed. One particular
feature of capture trajectories that we investigate is their lifetime.
Uncontrolled, these orbits can impact with the planetary satellite
or exit the interior Hill region after very short timespans. Koon et
al.2 investigated orbits that travel between the interior and exterior
Hill regions and showed that the amount of time a trajectory spends
orbiting the planetary satellite is determined by chaotic dynamics.

We develop a method that identifies sets of capture trajectories
that do not impact or escape the planetary satellite for extended time
periods. We call these safe trajectories and the regions in which they
lie safe zones. These safe low-energy trajectories may be useful for
the proposed NASA Jupiter Icy Moons Orbiter mission. The plan for
this mission is to orbit three of Jupiter’s moons, Callisto, Ganymede,
and Europa. We focus our attention on Europa; however, our results
can be applied to the other moons as well. With the science goals of
this mission being such that a low-altitude, high-inclination stable
orbit about Europa is desirable, we examine low-cost methods to
transfer from a safe capture trajectory to a long-term stable orbit.
To identify possible target long-term stable orbits, we turn to some
previous work on frozen orbits identified by using double averaging
assumptions. Broucke3 identified and studied the long-term behav-
ior of both the circular and elliptic frozen orbits. Scheeres et al.4

studied circular frozen orbits with a specific application to orbits
about Europa and showed that the unstable circular frozen orbits
that exist at higher inclinations can be stabilized with small control
maneuvers. Paskowitz and Scheeres5 studied elliptic frozen orbits
with a particular application to orbits about Europa and also in-
vestigated regions where the frozen orbit assumptions break down.
Where these regions lie has strong consequences for our current
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study. Our analysis provides us with another method to determine
where frozen orbit assumptions break down.

Along with these criteria for choosing appropriate target orbits,
we also determine criteria on the safe capture trajectories that re-
sult in the lowest-cost transfers. We discuss schemes that allow us
to transfer to elliptic frozen orbits and circular frozen orbits and
evaluate the costs associated with both schemes. We also provide
specific examples of transfer maneuvers. The end result is a method
that identifies trajectories that enter into orbit about Europa on low-
energy capture trajectories that do not impact or escape for at least
one week and from which it is possible to transfer to a more stable
orbit with relatively low cost.

Hill Three-Body Problem
The physical system considered is that of a spacecraft orbiting

a planetary satellite, which in turn is orbiting a planet. Figure 1
shows the geometry of this system. Only the first-order perturbing
effect of the planet’s gravity is considered in this model, which is
the Hill three-body problem. This model is a limiting case of the
circular restricted three-body problem (CR3BP) and describes the
dynamics of a massless particle that orbits that two point masses
rotating about each other in a circular orbit. The Hill three-body
problem gives a good description for the motion of a spacecraft in
the vicinity of a planetary satellite, as validated in Ref. 4.

The equations of motion for the Hill three-body problem are as
follows:

ẍ = 2N ẏ − (μ/r 3)x + 3N 2x (1)

ÿ = −2N ẋ − (μ/r 3)y (2)

z̈ = −(μ/r 3)z − N 2z (3)

where r = √
(x2 + y2 + z2) is the magnitude of the position vector,

N is the angular velocity of the planetary satellite about the planet,
and μ is the gravitational parameter of the planetary satellite. Their
values for Europa are given in Table 1. We assume that the planetary
satellite is in a circular orbit about the primary.

The equations of motion given in Eqs. (1–3) are in dimensional
form. However, it is useful to nondimensionalize this model because
computations can then be scaled to any physical system that is mod-
eled by the Hill equations of motion. To nondimensionalize the equa-
tions of motion, take l = (μ/N 2)1/3 as the unit length and τ = 1/N
as the unit time. The equations then take on the following form:

ẍ = 2ẏ − (x/r 3) + 3x (4)

ÿ = −2ẋ − (y/r 3) (5)

z̈ = −(z/r 3) − z (6)

and have no free parameters.
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Table 1 Parameters of Europa

Parameter Symbol Value

Europa radius, km R 1565
Europa orbital period, days T 3.55
Europa orbit rate, rad/s N 2.05 × 10−5

Europa gravitational parameter, km3/s2 μ 3.201 × 103

Normalizing unit length, km l = (μ/N 2)1/3 1.968 × 104

Normalizing unit time, s τ = 1/N 4.878 × 104

Fig. 1 Geometry of Europa
orbiter model.

Fig. 2 Regions of allowable motion and libration points in Hill three-
body problem for J = −−2.15: - - - -, planar capture trajectory that origi-
nates near L2.

Equilibrium solutions exist in the Hill three-body problem, anal-
ogous to the L1 and L2 libration points in the CR3BP. There are two
libration points that are symmetric about the origin with coordinates
x = ±(μ/3N 2)1/3, y = z = ẋ = ẏ = ż = 0, where the x coordinate in
nondimensional form is x = ±(1/3)1/3 = ±0.693 . . . (Fig. 2).

Equations (4–6) have an integral of motion, denoted as the Jacobi
integral J ,

J = 1
2
v2 − (1/r) − 1

2
(3x2 − z2) (7)

where v = √
(ẋ2 + ẏ2 + ż2) is the speed of the particle in the rotating

frame. The condition v ≥ 0 in Eq. (7) places a restriction on the
position of the particle for a given value of J . Setting v = 0 defines
the zero-velocity surface, which sets a physical boundary for the
motion (Fig. 2).

For values of the Jacobi constant above a critical value, it is possi-
ble for both escaping and capture trajectories to exist in this problem.
This critical value of J defines the energy at which the zero-velocity
surfaces open at L1 and L2 and is equal to

Jcrit = − 1
2
9

2
3 = −2.16337 (8)

Because we are concerned with characterizing capture trajectories,
we will look at trajectories with a Jacobi constant greater than Jcrit.

Periapsis Poincaré Maps
A Poincaré map associates a continuous time dynamic system

to a discrete time system. The use of a Poincaré map allows us to
reduce the dimensionality of a system by at least one and by two if
there exists a first integral in the system, as is the case in the Hill

three-body problem. In general, Poincaré maps are defined such
that the surface of section is a plane in position space, such as x = 0.
However, because all that is needed to define a Poincaré map are
two surfaces of section that are transversal to the flow, we define
them differently here and use periapsis passages as our surface of
sections, following Ref. 1.

Definition of Map
Our Poincaré map relates capture trajectories that start near the

libration point L2 to the periapsis passages of these trajectories.
Following Ref. 6, we define the initial surface of section as the
surface of a sphere with radius ( 1

3
)1/3 bounded by the zero-velocity

surface. This surface then passes through the libration point region
and extends as far as the zero-velocity surface of the Hill problem.
The image surface is defined by the periapsis condition ṙ = 0 and
r̈ > 0. For the three-dimensional Hill three-body problem, the phase
space is six dimensional. The use of the Poincaré map allows us to
restrict the problem to the surface of section and, hence, reduce the
problem by one dimension. As mentioned earlier, there exists an
integral of motion J in the problem that allows us to reduce the
problem by one additional dimension. The Poincaré map is then
computed at a given value of the Jacobi integral J (so that the map
is a function of J ) and is four dimensional.

Because of the symmetry between the L1 and L2 libration points,
we only analyze capture trajectories that originate near L2; however,
our results can be directly related to trajectories that originate near
L1 by the following transformation1:

(x, y, z, ẋ, ẏ, ż, t)
Gμ−→ (−x, −y, −z, −ẋ, −ẏ, −ż, t) (9)

because the equations of motion remain unchanged. By a capture
trajectory, we mean a trajectory that remains in the Hill region the
planetary satellite for a finite period of time. These trajectories enter
the region of the planetary satellite in the vicinity of the libration
point and orbit the planetary satellite at least once. Figure 2 shows
an example of a capture trajectory.

In the three-dimensional case, the periapsis Poincaré map is four
dimensional, and so we need four parameters to characterize it. For
the initial surface of section, we use the (x, z) coordinates and two
angles (δ, φ) for the direction of the velocity vector. The (x, z) co-
ordinates are chosen randomly on the section of the surface of the
sphere that falls within the allowable region. Because we are con-
sidering the surface of a sphere, the y coordinate can be determined
from the relationship r = √

(x2 + y2 + z2), where r = ( 1
3
)1/3 and the

sign for y is chosen randomly. We then have the following initial
conditions:

x0 = x, ẋ0 = v cos φ cos δ

y0 = ±
√

r 2 − x2 − z2, ẏ0 = v cos φ sin δ

z0 = z, ż0 = v sin φ (10)

where the angles (φ, δ) ∈ [π/2, 3π/2] and v is determined from
the Jacobi integral

v =
√

2[J + (1/r)] + (3x2 − z2) (11)

The parameters used to represent the image map are the periapsis
position vector (x, y, z) and the inclination.

With the initial conditions given by Eq. (10), an eight- (seven-)
order Runge–Kutta–Fehlberg integration routine is used to integrate
the trajectories. We integrate the trajectories for multiple passages
through the image map, meaning that they have multiple periapsis
passages. We will study the phase space in terms of these multiple
periapsis passages for various values of J .

Poincaré Map Results
As an initial study, we consider the two-degree-of-freedom (pla-

nar) case of the Hill three-body problem. In this model, motion is
restricted to lie in the x–y plane, and so the periapsis Poincaré map
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a)

b)

Fig. 3 Periapsis Poincaré maps for planar case with J = −−2.15: �, su-
face of Europa. a) First periapsis passage regions and b) first four peri-
apsis passage regions: black, first; blue, second; red, third; and green,
fourth.

reduces to two dimensions. The initial surface, which consisted of
the surface of a sphere in the three-dimensional case, reduces here to
an arc of circle. It is parameterized with the x coordinate and an angle
δ that defines the direction of the velocity vector. This is equivalent
to the initial conditions defined by Eq. (10) with z = φ = 0. On the
image map, we use the coordinates (x, y) of the periapsis position
vector.

Although the periapsis Poincaré map is computed in nondimen-
sional coordinates to allow for its application to many different phys-
ical systems, we will primarily consider Europa, one of Jupiter’s
moons. On many of the periapsis Poincaré maps, the surface of Eu-
ropa will be included to give some perspective to the plot. Although
some of the periapsis passages of these trajectories lie beneath the
surface of Europa, indicating that they impact with it, for the time
being we will continue to include these trajectories in the analysis
because they are not necessarily impact trajectories when a different
planetary satellite is considered. In a later section of this paper, we
will deal with distinguishing between impacting and nonimpacting
trajectories.

We first consider the periapsis Poincaré map for the first periap-
sis passage of trajectories with J = −2.15, as was done in Ref. 1.
As shown in Fig. 3a, the first periapsis passages are divided into
two disjoint regions. The first, located near the planetary satellite,
corresponds to trajectories that immediately enter the region in the
vicinity of the planetary satellite and have their first periapsis pas-
sage in that region. The second region, located near the L2 libration
point, corresponds to trajectories that do not immediately leave the
vicinity of L2 and have their first periapsis passage in that region.
These can be associated with the periodic orbit that exists about L2,
as shown in Ref. 6. Some of these trajectories will subsequently
enter the region of the planetary satellite and some will escape from
the system entirely. By our current definition of capture trajectory,
there is no guarantee that the trajectory actually comes from outside
the Hill region and not from inside the region itself. Even though our
initial conditions stipulate that the trajectory must have an inward
velocity vector, it is possible that the trajectory does not originate
from where we would like it to. To remedy this, we perform an
additional integration. When necessary, we integrate the trajectory
backward in time from its initial condition in the vicinity of the
libration point for four time units, which should give the trajectory
enough time to exit the Hill region if that is what the trajectory cor-
responds to, and we then only consider capture trajectories that lie
beyond the boundary of the Hill region after those four time units.
This guarantees that our capture trajectories actually do originate
from outside the Hill region.

We now extend the periapsis Poincaré map to four periapsis pas-
sages. This means that we plot the first four periapsis passages of
each trajectory for J = −2.15, as before. Each periapsis passage

is assigned a different color, as shown in Fig. 3b. We see that each
subsequent periapsis passage region becomes more spread out. This
occurs because we are not using symplectic coordinates on our map.
We also note that some of the colors overlap, that is, there is a small
blue region inside the black region. These overlaps occur because,
as mentioned earlier, some of the trajectories do not immediately
have a periapsis passage in the vicinity of the planetary satellite but
instead have their first periapsis passage near the L2 region. There-
fore, it is not until the second periapsis passage that these trajectories
are near the planetary satellite, and so they have a different color.
The dynamics of these trajectories, once they enter the region near
the planetary satellite, are similar to the dynamics of the trajectories
that enter that region immediately. Also note that the gaps in some
of the regions are not because trajectories cannot have periapsis pas-
sages there, but because these regions were generated numerically,
and, as such, only a finite number of trajectories can be considered.

From this point forward, we will ignore the region of first periapsis
passages that occur in the vicinity of the L2 libration point and
define the first periapsis passage of a particular trajectory to be its
first periapsis passage that occurs in the vicinity of the planetary
satellite.

To illustrate how the periapsis Poincaré maps depend on J , Fig. 4
shows a series of Poincaré maps for increasing values of J . Note
that the regions become larger as J increases, which is expected
because the measure of the initial condition region increases with
J . Only the first periapsis passage regions are shown because the
trends shown by these regions will also apply to subsequent periapsis
passages. Also note that the plots in Fig. 4 are mirror images of the
corresponding plots shown in Ref. 1.

It is much more difficult to visualize the periapsis Poincaré maps
for the three-dimensional problem because the Poincaré map it-
self is four dimensional. In general, the trends we see in the two-
dimensional case apply to the three-dimensional case, such as the
periapsis passage regions becoming larger in position space as J is
increased, as well as for subsequent periapsis passages. One way in
which to visualize the Poincaré map for the three-dimensional case
is to plot the periapsis passage’s three-dimensional position vector,
with an arrow indicating the direction of its velocity (which repre-
sents the inclination of the periapsis passage). An example of this
is shown in Fig. 5. Another way to visualize the three-dimensional
case is by considering the inclination of the periapsis passage as a
function of its radius. Figure 6a shows the inclination as a function
of the radius for the first periapsis passage of trajectories with var-
ious values of J . Note that as J increases, the periapsis passages
reach higher inclinations. Figure 6b shows the inclination as a func-
tion of the radius for multiple periapsis passages of trajectories with
J = −2.15. In this case, the maximum obtainable inclination does
not increase for subsequent periapsis passages, but the periapsis
passages do occur over larger ranges of radii.

We can now introduce a more systematic description of these
maps and regions. Define the set of trajectories that lie in the first
periapsis passage region close to Europa as the set S1,

S1 = {x |x ∈ initial region} (12)

Then, under the flow dynamics of the Hill problem, we can represent
the Poincaré map as � where

Sn + 1 = �(Sn) = �2(Sn − 1) = · · · = �n(S1) (13)

Thus, it is clear that any point in Sn + 1 has a unique image in S1. If
we use the symmetry operator defined by Eq. (9), Gμ, we can also
associate the mirror image trajectories as S′

n = Gμ(Sn), defined by
reflecting all coordinates and velocities about the origin.

Symmetry Between Escape and Capture Trajectories
Aside from the symmetry Gμ between L1 and L2 that was dis-

cussed earlier, additional symmetries exist in this problem (and in
the CR3BP). Two that we consider relate to the symmetry between
escape and capture trajectories. If (x, y, z, ẋ, ẏ, ż, t) is a solution of
the equations of motion, then the trajectories obtained by applying
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Fig. 4 Series of Poincaré maps for various values of J: �, surface of Europa.

the following transformations are also solutions,1

(x, y, z, ẋ, ẏ, ż, t)
G1→ (−x, y, z, ẋ, −ẏ, −ż, −t) (14)

(x, y, z, ẋ, ẏ, ż, t)
G2→ (x, −y, z, −ẋ, ẏ, −ż, −t) (15)

Thus, if we have a capture trajectory, applying either of the fore-
going two symmetries will give us an escaping trajectory. By an

escaping trajectory, we mean a trajectory that crosses the initial sur-
face of sphere with an outward velocity and, therefore, exits the
Hill region. Figure 7 shows the symmetry between the capture and
escape regions on the Poincaré periapsis map for the first periapsis
passage in the planar case. Figure 7 shows the first periapsis pas-
sage region for the capture trajectories, and, hence, for the escaping
trajectories this corresponds to the periapsis passage immediately
preceding escape (or transfer to the region in the vicinity of L1,2).
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Fig. 5 First periapsis passage region for three-dimensional trajecto-
ries with J = −−2.15; location in position space of periapsis passage is
indicated by base of arrow, velocity direction by direction of arrow, and
magnitude of velocity by length of arrow.

a)

b)

Fig. 6 Inclination as function of normalized radius for three-
dimensional capture trajectories: a) first periapsis passage of trajec-
tories with various values of J and b) first four periapsis passages of
trajectories with J = −−2.15.

This symmetry between capture and escape trajectories can be
extended past the first periapsis passage. This allows us to deter-
mine when capture trajectories can escape from the Hill region. A
capture trajectory escapes the Hill region when it passes through
the initial surface of sphere with an outward velocity. However, a
captured trajectory cannot escape arbitrarily. We found that it will
only escape when it passes through the first periapsis passage es-
cape region, which is the escaping region symmetric to the first

a)

b)

Fig. 7 Poincaré maps showing symmetric capture and escape regions
for trajectories with J = −−2.15: a) first periapsis passage regions for
capture trajectories and symmetric escape trajectory regions and b) first
four periapsis passages regions and symmetric escape regions reflected
about y axis.

Fig. 8 Capture trajectory that escapes after four periapsis passages:
××, periapsis passages.

periapsis passage capture region as shown in Fig. 7a. For this exam-
ple (J = −2.15), we found that the earliest that capture trajectories
pass through this region is during their third periapsis passage, and
so we can conclude that once a capture trajectory with J = −2.15
is found, it is guaranteed to have at least three periapsis passages
before escape. Such a trajectory must also lie in the preimage of
the escape region. Because of this, these transfer regions can be
easily found by identifying regions where these symmetric regions
intersect with each other. Figure 7b is a periapsis Poincaré map that
shows the first four periapsis passages of capture trajectories, as well
as one set of their symmetric regions that correspond to escaping
trajectories. We see that there is an overlap of these regions, which
is the mechanism by which capture trajectories can subsequently
escape. An example of this is shown in Fig. 8. We can see that this
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trajectory has its third periapsis passage in the portion of the red
region that overlaps with the blue symmetric region. We then know
that its fourth periapsis passage will be in the portion of the green
region that overlaps with the black symmetric region, which can be
seen in Fig. 7b. Any capture trajectory that has a periapsis passage
in the black symmetric region will not have any subsequent periap-
sis passages and will escape. Thus, from the fact that this trajectory
had its third periapsis passage in a region that overlaps with the blue
symmetric escaping region, we know that it will have a total of four
periapsis passages and then escape. As seen in Fig. 8, this trajectory
does indeed escape from the Hill region after the fourth periapsis
passage.

We can use the symbolic notation defined earlier to give a clear
description of this result. First, we represent the time reversal sym-
metry by an operator Gt . From the property of this symmetry we
have

S−(n + 1) = Gt (Sn + 1) = Gt [�
n(S1)] = �−n Gt (S1) = �−n(S−1)

(16)

The condition for a trajectory x1 ∈ S1 to escape is then that it eventu-
ally lies in S−1 or �n(x1) ∈ S−1 for some n. If this occurs, it implies
that �n(S1)∩ S−1 
= 0, or is not empty for some n, and that these tra-
jectories escape in n − (−1) = n + 1 periapsis passages. In Fig. 7b,
this region is represented by the overlap of the green points and the
black points on the right side, and we see that �3(S1) ∩ S−1 is not
empty and, thus, that they escape in four periapsis passages from
their initial location in S1. Because of the uniqueness of solutions,
we can also infer that the image of this set is invariant:

�[�n(S1) ∩ �−m(S−1)] = �n + 1(S1) ∩ �−(m + 1)(S−1) (17)

We immediately note that in Fig. 7a, for low values of J , we have
S1 ∩ S−1 = S1 ∩ Gt (S1) = 0, and no immediate escapes occur. Also
note, however, that when J is large enough, the set S1 crosses the
y = 0 axis, meaning that S1 ∩ Gμ[Gt (S1)] 
= 0, where Gμ is the
symmetry operator defined by Eq. (9), and, thus, that direct escapes
can occur after one periapsis passage for higher J values.

Although Figs. 7 and 8 were computed for the planar case, the
conclusions and the symbolic notation also apply to the three-
dimensional case where the sets are four dimensional. In the three-
dimensional case, analogous symmetric escaping regions exist, and
we find that capture trajectories must have a minimum of three peri-
apsis passages before escaping for low values of J . Figures 7 and 8
computed for the planar case were used because this case is much
easier to visualize graphically.

Safe Zones
We have discussed earlier the possibility of capture trajectories

eventually escaping from the Hill region; however, we have not yet
considered the trajectories that impact with the planetary satellite.
In the Poincaré maps presented thus far, all trajectories have been
considered, even those whose periapsis passages clearly fall beneath
the surface of the planetary satellite. To differentiate between trajec-
tories that impact and trajectories that do not, we introduce the term
safe trajectory to denote a trajectory that does not impact with the
planetary satellite or escape from the Hill region for some specified
period of time. The regions in which these trajectories lie will be
denoted as safe zones. In particular, we consider the first periapsis
passage region S1 and denote the set of all safe trajectories in the
set as the safe zone in S1. We can then identify whether or not a tra-
jectory is safe by where its first periapsis passage occurs. Although
we define safe zones by the first periapsis passage of the trajectory,
they could be defined by any of the periapsis passages. For example,
we could have a safe zone defined by the second periapsis passage
of the trajectories. In this case, we could say that any trajectory that
had its second periapsis passage in that region is a safe trajectory.
Because as noted earlier, the periapsis passage regions become dis-
tended for subsequent periapsis passages, the first periapsis passage
region is the smallest and, hence, is a logical choice for defining the
safe zones.

Fig. 9 Poincaré map showing safe zone, impact, and escape regions in
black, red, and blue respectively.

Fig. 10 Poincaré maps of planar safe zones for various values of J.

We first consider safe zones in the planar case and will continue
to use Europa as our example. For this discussion, we consider that
a trajectory is safe if it persists for a non-dimensional time period of
4π , which for Europa corresponds to 7.1 days. Figure 9 shows the
safe zone projected into the first periapsis passage of capture tra-
jectories (S1) with J = −2.15. Capture trajectories with J = −2.15
with their first periapsis passage in the black region will not impact
or escape for at least one week. The trajectories that lie in the red
region will impact, and the trajectories in the blue region will escape.

Figure 9 shows the safe zone for only one value of the Jacobi
integral. We next consider the safe zones for various values of J . The
results are shown in Fig. 10 and are presented in a slightly different
fashion because only the safe zone is plotted, not the entire region
of first periapsis passages. Once again, these maps are computed
for 4π time units and so do not impact or escape over that period
of time. We see that as the Jacobi integral value increases, the safe
zone regions become more distended and have a larger y value.

By being able to characterize the safe zones in this way, we can
conclude that if a trajectory has its first periapsis passage in the safe
zone, if will be safe for at least one week. We can then, for a trajectory
with a particular Jacobi integral value, determine where we wish its
first periapsis passage to be. A trajectory that falls in this region is
then potentially useful. If we wish to perform a maneuver to place it
in a more stable trajectory but the maneuver fails, the spacecraft will
remain safe for a period of time, hopefully long enough to perform
another maneuver. Another motivation for characterizing these safe
zones arises when considering low-thrust maneuvers. Because we
know where in phase space the safe zones are located, low-thrust
maneuvers can be designed such that the spacecraft travels through
safe zones over the course of its maneuver, therefore guaranteeing
that the spacecraft will not impact or escape.
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The safe zones just discussed were computed for the planar case
of the Hill three-body problem. Analogous regions can be computed
for the full three-dimensional case; however, they will need to be
studied in a different way. In this case, it is not only where the periap-
sis passages are located in position space that is important, but also
their inclinations. We could also characterize the three-dimensional
safe zones in terms of the radius of the trajectory at its periapsis pas-
sage along with its inclination. However, it is not the visualization
of the safe zones in the three-dimensional problem that is important,
but their existence. The method used to find safe zones for three-
dimensional trajectories is essentially the same as the method used
in the planar case. We first identify capture trajectories for a par-
ticular value of J . Once we have found these capture trajectories,
we determine whether or not they escape from the region or impact
with the planetary satellite over a one week period for the Europa
case. The capture trajectories that do not impact or escape during
that time period are defined to be the safe trajectories.

Transferring to Long-Term Stable Orbit
The preceding discussion defined a method to compute safe tra-

jectories over a given period of time. For science operations, we
wish to transfer the spacecraft into an orbit that is long-term stable.
In the following text, we briefly review which orbits are stable over
long time periods and determine the cost to transition into these
orbits.

Frozen Orbits
Earlier studies of the Hill three-body problem have identified

orbits that are stable over long timespans. These orbits can be found
by analyzing a doubly averaged approximation to the Hill problem.
This approximation averages over both the mean anomaly of the
orbit of the spacecraft about the planetary satellite and over one orbit
of the planetary satellite about the planet. This allows us to obtain
the secular equations of the orbital elements, where the change in
the mean anomaly is not presented,4

da
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= 0 (18)
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8
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n

cos i√
1 − e2

(2 + 3e2 − 5e2 cos 2ω) (22)

The numerical values of the parameters for Europa in Eqs. (18–22)
are given in Table 1. Note that the equations do not depend on �
and that a is constant under this approximation; hence, we only
need to consider the equations for e, i , and ω. These three equations
have equilibria, and it is these equilibria that will define the frozen
orbits, orbits that have constant values of those orbital elements
on average. As will be discussed, these frozen orbits correspond
to viable trajectories, under some assumptions, in the unaveraged
system.

We first consider near-circular orbits. Previous studies have
shown that circular frozen orbits exist for all values of inclination,
and are stable for i ≤ 39.23 deg and i ≥ 140.77 deg and unstable for
39.23 < i < 140.77 deg (Ref. 4). For the unstable orbits, the char-
acteristic time is on the order of 14 days, where the orbital element
value increases by an order of magnitude after e ∼ 2.718 charac-
teristic times. As long as the altitudes of these orbits are within a
few hundred kilometers of the surface of Europa, these near-circular
orbits will also exist in the unaveraged system. As the radius of the

Fig. 11 Relationship between inclination and eccentricity for elliptic
frozen orbits.

orbits gets large, the tidal perturbations present in the system can
cause the assumptions used to obtain the frozen orbits to become
invalid. Once in this regime, most orbits are strongly unstable and
are likely to impact or escape from the planetary satellite.

Elliptic frozen orbits exist as well. By determining the equilibria
of Eqs. (19–21), we find that elliptic frozen orbits exist for ω = ±
π/2 and e = √

(1 − 5/3 cos2 i) and that these frozen orbits are stable
whenever they exist, as shown in Ref. 5. Numerical simulations have
shown that these frozen orbits also persist in the unaveraged system.
However, there are limits on the applicability of the doubly averaged
assumptions, and as the radius of these frozen orbits increases, the
perturbations increase, and they are less likely to remain frozen
and in orbit about the planetary satellite. Because for the elliptic
frozen orbits, the eccentricity and inclination are tied together, we
can see that as the inclination becomes more polar, the eccentricity
increases. Figure 11 shows the relationship between eccentricity and
inclination for the elliptic frozen orbits. As a frozen orbit becomes
more polar, its eccentricity increases. This causes the apopasis radius
to increase, and so the perturbations on the frozen orbit become
stronger. We found earlier that the frozen orbit assumptions begin
to break down, and the frozen orbits cease to exist in the unaveraged
system for inclinations above ∼55–60 deg for direct orbits and above
∼120–125 deg for retrograde orbits, as shown in Ref. 5.

One way to visualize motion in the vicinity of elliptic frozen orbits
is by using contour plots. There are two integrals of motion in the
doubly averaged system θ , a term related to the angular momentum

projected on the z axis and the doubly averaged potential R̃ (Ref. 3),

θ = (1 − e2) cos2 i = constant (23)

R̃ = (N 2a2/4)
[
1 + 3

2
e2 − 3

2
sin2 i

(
1 + 3

2
e2 − 5

2
e2 cos 2w

)]
(24)

The quantities R̃ = R̃(e, i, ω) and θ = θ(e, i) are integrals of motion
and, thus, are both constant. Based on this, we can define curves
of e vs ω and i vs ω that define where the motion occurs. These
curves will be denoted as contour plots and define the path that the
orbital elements will follow on average. For initial conditions that
correspond to a frozen orbit, the contour plots have both circulating
and librating regions, as shown in Fig. 12, where the frozen orbit
lies in the center of the libration region. Our goal is to perform a
transfer maneuver such that the new orbit remains in the libration
region.

Using Safe Capture Trajectory to Initiate Transfer
We observed earlier that it is desirable to perform maneuvers to

transfer to a long term stable orbit from capture trajectories in the
safe zone. The elliptic and circular frozen orbits are such potential
target orbits, and we first consider the elliptic frozen orbits. For this
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a)

b)

Fig. 12 Contour plots corresponding to elliptic frozen orbit with a)
e = 0.586 and b) i = 51.14 deg.

type of transfer to be affordable in terms of 
v, the safe trajectories
and the frozen orbits must lie close to each other in phase space.
Thus far, we have been analyzing capture trajectories in terms of
their periapsis passages. This becomes useful now because an ideal
location from which to initiate a transfer to a more stable orbit is
at periapsis. Good science trajectories should have low periapsis
altitudes, and so by performing the transfer at periapsis, we can
ensure this. This is also the optimal place to make changes to the
orbit energy.

When considering periapsis passages of capture trajectories from
which to initiate a maneuver, we will consider all of the periap-
sis passages of these trajectories. Ideally, it would be better to use a
periapsis passage that occurs near the beginning of the defined safe
period, for obvious reasons. However, for now we consider any pe-
riapsis passage that occurs during the safe period. We first consider
the safe zone for capture trajectories with J = −1.70 to see what
range of radii they occur over. Figure 13 shows that the periapsis
passages occur over a wide range of radii, all of the way up to a
normalized radius of almost 0.7, which corresponds to 13,773 km
(radius of Europa being 1565 km). We, therefore, see that we should
restrict periapsis passages to those that have altitudes much closer
to the surface. In Fig. 13, we also see that the periapses of the safe
capture trajectories occur over all eccentricities, up to about 0.72.

Transfer to Elliptic Frozen Orbits
For transfers to elliptic frozen orbits, we restrict ourselves to pe-

riapsis passages of capture trajectories that are within 250 km of the

a)

b)

Fig. 13 Inclination as a) function of normalized radius and b) eccen-
tricity as function of inclination for all periapsis passages of safe capture
trajectories with J = −−1.70.

Fig. 14 Periapsis passages of capture trajectories with altitudes
<– 250 km.

surface of Europa. Figure 14 shows the eccentricity as a function
of inclination for periapsis passages of safe capture trajectories that
satisfy this condition for different values of J . As J increases, the
periapsis passages reach higher inclinations. We also see that re-
stricting the periapsis passages to fall within 250 km of the surface
of Europa causes a large reduction in the range of eccentricities over
which they occur. For example, if we compare the part of Fig. 14
that corresponds to the capture trajectories for J = −1.70 to Fig. 13,
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we see that when the radius of periapsis is not restricted, the peri-
apsis passages had eccentricities over the range of e = 0 → 0.72,
and when the radius of periapsis is restricted, the eccentricity only
ranges over about e = 0.68 → 0.72. Therefore, we conclude that the
lower eccentricity periapsis passages of the safe capture trajecto-
ries occur at larger radii and, hence, are farther from the surface of
Europa.

Recall that the elliptic frozen orbits have orbit elementsω = ±π/2
and e = √

(1 − 5/3 cos2 i). Because we wish to transfer from a safe
capture trajectory to a frozen orbit, we must determine what charac-
teristics the periapsis passages of the capture trajectories must have
to perform this maneuver. The first thing we do is only consider
periapsis passages of capture trajectories that have an argument of
periapsis close to the frozen orbit value. Because there are oscilla-
tions in the frozen orbits in the unaveraged system, we can relax
the condition ω = ±90 deg somewhat and consider periapsis pas-
sages of safe capture trajectories that fall within at least 5 deg of
this condition. Then, if the periapsis passage of the safe capture tra-
jectory has an inclination for which an elliptic frozen orbit exists,
a maneuver can be performed to change the eccentricity so that it
corresponds with the inclination based on the frozen orbit relation,
and the spacecraft would then be in an elliptic frozen orbit.

Figure 15 shows the set of periapsis passages of safe capture tra-
jectories with J = −1.60 that lie within 250 km of the surface of
Europa and have an argument of periapsis within 5 deg of ±90 deg.
A line denoting where the elliptic frozen orbits lie is shown, and so
we see the change in eccentricity that would be required to transfer
from a capture trajectory to a frozen orbit. We see that the frozen

a)

b)

Fig. 15 Set of periapsis passages of safe capture trajectories with
J = −−1.60 that lie within 250 km of surface of Europa and have a) ar-
gument of periapsis within 5 deg of ±90 deg and b) cost to transfer to
corresponding elliptic frozen orbit.

orbit line actually passes through the safe zone. This means that
capture trajectories that lie on the frozen orbit line have orbital el-
ements corresponding to a frozen orbit at that instant. However, a
true elliptic frozen orbit is stable and bounded and would not arrive
from outside of the Hill sphere. This implies that the frozen orbit
assumptions are not valid at this point. Frozen orbits at higher eccen-
tricities would be subject to larger perturbations and so would not be
valid either. We do not know precisely where the averaging assump-
tions fail; however, we have evidence from numerical integrations
that points to the left of the frozen orbit line are still governed by
the averaged equations of motion. Therefore, when considering safe
capture trajectories from which to initiate a transfer, we do not con-
sider periapsis passages that fall to the right of the frozen orbit line
because this is beyond the point at which the averaging assumptions
break down.

Figure 15 also shows the cost, in meters per second, to transfer
from the safe capture trajectory to an elliptic frozen orbit. The peri-
apsis passages of safe capture trajectories used to initiate the transfer
are those shown in Fig. 15. The region in Fig. 15 that is denoted not
valid refers to the region where the frozen orbits have broken down.
The region denoted valid refers to the fact that these transfers are
practical because the frozen orbits exist. The gray region is present
because we do not have an absolute boundary on which the frozen
orbits cease to exist, and so some transfers in the gray region may
be valid whereas others may not.

To prove that our scheme to transfer to an elliptic frozen orbit
works, we computed the transfer for one of the periapsis passages
of the safe capture trajectories and then continued the integration
to show that we do indeed transfer to a stable elliptic frozen orbit.
Starting from the safe capture trajectories with J = −1.60, as shown
in Fig. 15, we choose the periapsis passage that has the following
parameters: e = 0.718, ω = −93.66 deg, i = 51.14 deg, and a radius
of periapsis 166 km above the surface of Europa. The eccentricity
that corresponds to a frozen orbit at this inclination is 0.586. The cost
of performing this maneuver is 69 m/s. To show that the new orbit is
an elliptic frozen orbit, Fig. 16 shows the trajectory on contour plots
of eccentricity as a function of argument of periapsis and inclination
as a function of argument of periapsis. Figure 16 shows that the new
orbit does stay inside the libration region of the contour plot, and so
we have successfully transferred from a safe capture trajectory to a
bounded orbit close to frozen orbit conditions.

Transfers to Circular Frozen Orbits
We currently consider two approaches to transfer to a circular

frozen orbit, namely, two-impulse and one-impulse maneuvers. The
two-impulse scheme involves performing a maneuver at the peri-
apsis passage of the capture trajectory that allows us to use the
dynamics of elliptic frozen orbits to achieve a lower eccentricity
(which in turn increases the inclination). Following that, a second
maneuver is performed at the much lower eccentricity to circularize
the orbit. The one-impulse maneuver involves circularizing directly
from the periapsis passage of the capture trajectory.

We first consider the two-impulse approach. Earlier, to transfer to
an elliptic frozen orbit, we chose a maneuver to achieve the frozen or-
bit eccentricity. By examining the Fig. 12a, we see that if we choose
a slightly higher eccentricity, we can achieve much larger variations
in eccentricity, to the point where the eccentricity occasionally gets
very close to zero. Figure 17 shows this phenomenon, where in-
stead of performing a maneuver to change the eccentricity to 0.586
as described, we change the eccentricity to 0.687. We use the same
periapsis passage as in the elliptic frozen orbit transfer example,
that is, e = 0.718, i = 51.14 deg, ω = −93.66 deg, and altitude =
166 km. The cost of this maneuver is 38.6 m/s. The next step in this
approach is to circularize the orbit. With dependence on the altitude
of the orbit after it is circularized, some control maneuvers may be
necessary to keep the orbit from drifting too much. The frequency
and size of these maneuvers will depend on how much of a drift we
can tolerate and how quickly the orbit is drifting (depending on its
altitude).

The circularization maneuver will be performed at a periapsis
passage of the orbit shown in Fig. 17. To understand how the radius,
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Table 2 Comparison of cost to transfer from periapsis passage
of capture trajectory to circular frozen orbit

Transfer maneuver

characteristics Example 1a Example 2b

From capture trajectory to 38.6 38.6
near-frozen elliptic orbit, m/s

Circularization, m/s 10.3 230.3
Total cost, m/s 48.9 268.9
Average radius, km 5300 2875
Initial inclination, deg 61.6 57.9

aCorresponds to circularization taking place at minimum eccentricity of near-
frozen elliptic orbit.
bCorresponds to using higher eccentricity from which to circularize.

a)

b)

Fig. 16 Contour plots for eccentricity and inclination as function of ω
and numerical results for orbit obtained after transfer maneuver.

eccentricity, and inclination of the orbit vary and where the peri-
apsis passages occur, we refer to Fig. 18, which shows the radius,
eccentricity, and inclination as functions of time. The periapsis pas-
sages are indicated with a red x and the solid blue line in the top
plot represents the surface of Europa. We see that a lower eccen-
tricity is correlated to a higher radius and higher inclination. Higher
inclinations are more desirable; however, the higher radius associ-
ated with the higher inclination will mean an initially large circular
orbit. To compare these issues, two examples will be provided: one
where the circularization maneuver is performed from the minimum
eccentricity of the orbit shown in Fig. 17 and one where the circu-
larization is performed from a higher eccentricity. In both cases, the
radius of the orbit will be relatively large, and some control maneu-
vers will be necessary to maintain this orbit. Table 2 shows the cost

a)

b)

Fig. 17 Numerical results eccentricity and inclination as functions as
ω are plotted overlain on contour plots.

of achieving both of these circular orbits, as well as their average
radius and initial inclination. Figure 19 shows their characteristics.

We now consider the one-impulse approach for transferring into
a circular orbit. This approach involves directly circularizing the
orbit from the periapsis passage of the capture trajectory. The cost
of this maneuver is 444.5 m/s, and the resulting orbit has a radius of
1731 km that corresponds to an altitude of 166 km above the surface
of Europa and an inclination of 51.14 deg.

All of the transfers to circular frozen orbits computed thus far
result in orbits that have different radii and inclinations. To compare
them, we must consider additional transfers such that we achieve a
common orbit for both approaches. We actually consider two com-
mon orbits, with inclinations of 61.6 and 57.9 deg and both with a
radius of 1731 km. The two inclinations correspond to the inclina-
tions achieved by the two examples of the two-impulse approach,
and the radius corresponds to the radius achieved by the one-impulse
approach. The orbit obtained by the one-impulse approach has an
inclination of 51.14 deg, and so to transfer to inclinations of 61.6 and
57.9 deg costs 247.7 and 160.2 km/s, respectively. The radii of the
orbits achieved by the examples for the two-impulse approach are
about 5300 and 2875 km, and the costs of the Hohmann transfers to
reduce those radii to 166 km are 542.6 and 299.7 m/s, respectively.
Table 3 shows a comparison of the costs of the two approaches. We
see that the method that uses the dynamics of the system in the vicin-
ity of the elliptic frozen orbits is more efficient, and the difference
between the two methods is larger when the final inclination is larger.

If we compare the total costs of only the two-impulse approach,
we see that although the second example is slightly cheaper, an
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Fig. 18 Radius, eccentricity, and inclination of near-frozen elliptic or-
bit as functions of time.

a) b)

Fig. 19 Radius, eccentricity, and inclination of both possible circularized orbits over a one week period: a) transferring from minimum eccentricity
of near-frozen elliptic orbit and b) transferring from higher eccentricity of that same orbit.

a) b)

Fig. 20 Argument of periapsis as function of eccentricity for a) all periapsis passages and b) those with altitudes <– 250 km of safe capture trajectories
with J = −−1.60.

inclination of almost 4 deg lower is achieved. If we neglect the
Hohmann transfer component of this approach, we see that, whereas
the second example achieves a slightly smaller circular frozen orbit,
it has a cost 5.5 times greater than the transfer via the first example.
Because both circular orbits are stable, there is a clear advantage to
following the first example. Because the cost to achieve the stable
circular orbit is quite small (less than 50 m/s) it is possible that
a low-thrust vehicle could achieve this orbit. Following that, the

Table 3 Comparison of cost to transfer from periapsis
passage of capture trajectory to tightly bound circular orbit

Method

Using dynamics Direct
Example to circularize, m/s circularization, m/s

1a (i = 61.6 deg) 591.5 692.2

2b (i = 57.9 deg) 586.6 604.7

aCorresponds to circularization taking place at minimum eccentricity of
near-frozen elliptic orbit.
bCorresponds to using higher eccentricity from which to transfer.
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low-thrust vehicle could transition down to a tighter circular orbit
with a spiral maneuver.

As another approach to transferring from a safe capture trajectory
to a circular frozen orbit, we examine the possibility of performing
a simultaneous circularization and plane change maneuver. It is not
possible to do this maneuver with our current example because for
this maneuver to be feasible, the argument of periapsis at the periap-
sis passage must be either 0 or 180 deg, and for our current example,
the argument of periapsis is approximately −90 deg. Therefore, we
go back to our data of all of the periapsis passages of capture trajec-
tories at this energy level, J = −1.60, and examine their arguments
of periapsis. Figure 20 shows the argument of periapsis as a function
of eccentricity for all of the periapsis passages of the capture trajec-
tories with J = −1.60. In Fig. 20, we consider periapsis passages
with any radius of periapsis. We see that there are periapsis passages
that occur at all possible arguments of periapsis. However, as before,
we wish our final orbit to be such that it has a low altitude. Therefore,
we restrict the periapsis passages under consideration to those with
an altitude less than 250 km. Figure 20 also shows the argument of
periapsis as a function of eccentricity for the periapsis passages that
satisfy this condition. We see that the argument of periapsis only
lies between about 50 and 150 deg and −150 and −50 deg, and so
there are no periapsis passages with altitudes close to the surface for
which a simultaneous circularization and plane change maneuver
can be performed. We can conclude, from comparing in Fig. 20a
and Fig. 20b that the periapsis passages with lower arguments of
periapsis must have a large radius. We also see that these periapsis
passages have lower eccentricities. This is not surprising with the
doubly averaged dynamics in mind. In the doubly averaged sys-
tem, the semimajor axis is constant on average. Therefore, because
the capture trajectories originate far from the planetary satellite, for
them to have a periapsis passage with a low altitude the eccentricity
must be large. The numerical results support this because when all
periapsis passages are considered, they range in eccentricity from
∼0.32 to 0.75, but when only those with altitudes less than 250 km
are considered, eccentricity only ranges from about 0.705 to 0.75.
Therefore, by limiting the radius of periapsis, we are left with only
periapsis passages with large eccentricities. If we consider the av-
eraged dynamics once again, we note that for a trajectory to reach a
large eccentricity it must be circulating about a libration region, and
libration regions, are centered at about ±90 deg. If we once again
examine Fig. 20b, we see that this is the case. The arguments of pe-
riapsis in Fig. 20b extend about ±50 deg on either side of ±90 deg.
We can, therefore, conclude that it is not dynamically possible to
obtain a periapsis passage of a capture trajectory that will allow us to
perform a simultaneous circularization and plane change maneuver
to place the trajectory in a tightly bound circular orbit.

Color reproductions courtesy of the Jet Propulsion Laboratory, California Institute of Technology.

Conclusions
We have investigated captured trajectories in the Hill three-body

problem using a periapsis Poincaré map with application to trajec-
tories about Jupiter’s moon Europa. Trajectories that do not impact
with Europa or escape for one-week time periods have been identi-
fied, and the regions in which they occur are denoted as safe zones.
We then evaluated these safe zones to find trajectories for which it is
possible to transfer to long-term stable orbits. We consider transfers
from the periapsis passages of the safe capture trajectories to long-
term stable orbits. Orbits considered as possible targets are both
elliptic and circular frozen orbits that are either long-term stable
or can be stabilized with small control maneuvers. We developed
schemes to execute low-cost transfers to both elliptic and circular
frozen orbits. Transfers to elliptic frozen orbits can be executed
with one burn, whereas transfers to circular frozen orbits need be-
tween two and four burns. We found that the lowest-cost method to
transfer to circular frozen orbits involves using the dynamics of the
system to decrease the eccentricity rather than circularizing directly.
In particular, we describe a low-cost sequence that results in a cir-
cular orbit that could be reached by a low-thrust spacecraft. From
this orbit, it could then spiral down into a tighter circular orbit.
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